Keyword

EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > HYDROCARBONS

23 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 23
  • This dataset contains the results of replicate experiments which measured the total hydrocarbon content (THC) in water accommodated fractions (WAFs) of three fuels; Special Antarctic Blend diesel, Marine Gas oil and intermediate fuel oil IFO 180.

  • This dataset contains results of toxicity tests with early life stages of the sea urchin Sterechinus neumayeri as part of the AAS Project 3054 'Ecological risks from oil products used in Antarctica: characterising hydrocarbon behaviour and assessing toxicity on sensitive early life stages of Antarctic marine invertebrates.' Dataset consists of excel spreadsheets with separate spreadsheets for each test. Test details are outlined on worksheets 'Test conditions' and results of test in worksheet 'Counts'. This metadata record contains the results of toxicity tests conducted to characterise the response of Antarctic nearshore marine invertebrates to hydrocarbon contaminants in fuels commonly used in Antarctica as part of AAS Project 3054. This dataset contains results of toxicity tests conducted at Davis Station in 2010/11 summer season to test the sensitivity of fertilisation and early life stages of the sea urchin Sterechinus neumayeri to fuels in seawater. The three fuel types used were: Special Antarctic Blend diesel (SAB), Marine Gas Oil diesel (MGO) and an intermediate grade (180) of marine bunker Fuel Oil (IFO). Test treatments were obtained by experimentally mixing fuel and seawater in temperature controlled cabinets at -1 degrees C to prepare a mixture of fuel hydrocarbons in filtered seawater (FSW) termed the water accommodated fraction (WAF). WAF was produced by adding fuel to seawater in Pyrex glass bottles using a ratio of 1:25 fuel : FSW. This mixture was stirred at slow speed with minimal vortex for 18 h on a magnetic stirrer then settled for 6 h before the water portion was drawn from beneath the fuel. Mature S. neumayeri were collected from the outlet of Ellis Fjord, East Antarctica (68.62°S, 77.99°E) in December and early January 2010/11. Sea urchins were collected from shallow nearshore waters less than 1m deep, placed in 20 L buckets of seawater and transported to Davis station. They were held for 1–2 d in a flow-through aquarium at -1 plus or minus 1°C, with macroalgae from the collection site as a food source, before being used for testing. Seawater for experiments was collected ~20 m from the shoreline north of Davis station (68°34’ S, 77°57’ E). Collected seawater was filtered to 0.45 µm (FSW) and stored in 30 L polyethylene containers at 0°C. Fertilisation and early embryo toxicity tests. Effects of WAFs on fertilisation and on development to the 2 cell stage were determined in static tests in which both eggs and sperm were pre-exposed to SAB, MGO and IFO 180 WAFs, fertilised within treatments and developed to the 2 cell stage (G1, G2, G3). Gamete exposure and fertilisation was done in a temperature controlled room at 0°C. Test vessels were 22 mL borosilicate glass vials with foil lined lids holding 20 mL of test solution. There were 10 vials for each treatment; 5 replicates for fertilisation and 5 replicates for the 2 cell endpoint. To pre-expose eggs, 5 mL of prepared egg solution was added to vials that contained 5 mL of 2, 20 and 100% WAFs and FSW controls, to give final treatment concentrations of 1, 10 and 50% WAF dilutions and FSW controls. Vials were sealed, swirled gently to mix and left standing for 20 min. To pre-expose sperm, pooled sperm were activated by dilution in FSW to the density required for a sperm to egg ratio of 800:1. One µL of sperm solution was added to vials containing 5 mL of FSW and gently mixed. Five mL of this solution was then added to vials containing 5 mL of 2%, 20% and 100% WAFs (final treatments of 1, 10 and 50% WAF dilutions) and FSW controls. The vials were sealed, swirled gently to mix and left for 15 mins. After the gamete exposure period was complete, for each treatment the contents of the sperm vials were added to the egg vials with a final target concentration of ~10 eggs per mL. Vials were sealed and placed into temperature-controlled cabinets set at -1 plus or minus 1°C. Temperature was recorded at 10 min intervals using a data logger (Maxim ibutton) and averaged -1.3 plus or minus 0.5°C. Tests were terminated at 4 h for the fertilisation endpoint, and at 11 h for the 2 cell endpoint by the addition of 1 mL of 2.5% (v/v) buffered glutaraldehyde. Samples were viewed in a Sedgewick Rafter counting cell under a compound microscope at 10 times magnification. Fertilisation was assessed according to the presence or absence of a fertilisation membrane in the first 100 eggs counted, to obtain the percentage of eggs fertilised in each replicate. The 2 cell endpoint was assessed in the first 100 embryos counted, as the percentage of embryos in each replicate with normal first cleavage. Embryonic and larval toxicity tests. Effects of fuel WAFs on embryonic and larval development were tested with 1, 10, and 100% WAFs of SAB, MGO and IFO 180 and FSW control, with 5 replicates per treatment. Eggs and sperm were collected and density of solutions adjusted as described above to obtain the optimal sperm to egg ratio of 800:1. Two semi-static tests (EL1, EL2) were done to test effects of WAFs on embryos and larvae when first exposed as zygotes (eggs fertilised in FSW then exposed to treatments before the first cleavage). To fertilise eggs, sperm were activated by their addition to 10 mL of FSW, and 1 µL of this sperm solution was added to beakers containing 700 mL of egg solution and gently mixed. After two hours, the mixture was stirred with a glass rod to maintain a homogeneous suspension while aliquots were transferred into 100 mL glass vials filled with 80 mL of test treatment, to a final density of ~10 zygotes per mL. Three tests (GL1, GL2, GLP) were done to test effects of WAFs on larval development with exposure commencing as gametes. One mL aliquots of egg mixture were added to vials containing 80 mL of test solution (to a density of ~10 eggs per mL) and left for 20 min. Sperm were activated in 10 mL of FSW and 0.1 mL aliquots added to the vials to fertilise eggs within treatments at a sperm to egg ratio of 800:1. Two exposure regimes were used; continuous semi-static WAF renewal (GL1 and GL2) and a single static pulse of WAF exposure up to the 4 d unhatched blastula stage, followed by post exposure recovery in FSW up to the 21 d pluteus stage (GLP). Vials were left uncovered and placed in a temperature controlled cabinet at -1 plus or minus 1°C with an 18 h light, 6 h dark photoperiod. Tests were under semi-static conditions, with test solutions renewed every 4 d. Water quality data was collected at each water change. Treatment renewals were done by removing and replacing approximately 90% of test solution. Disposable syringes with silicon tubing attached to the nozzle, and with the end of the tubing covered with plankton mesh, were used to withdraw test solution while preventing embryos/larvae from being removed. The vials were then refilled to the 80 mL mark with fresh test solutions. Treatment renewals for tests EL1, EL2 and GL1, GL2 were with freshly made WAFs every 4 d. For the single pulse WAF exposure test (GLP) on the first treatment renewal at 4 d, treatment solutions were removed as described above, and replaced with FSW. All subsequent 4 d renewals for test GLP were with FSW. To maintain the volume and salinity of test treatments a small volume of purified and deionised (Milli-Q) water at -1°C was stirred into the vials to the 80 mL mark every 2 d between water changes. Water quality measurements were made at the start of tests and pre and post treatment renewals. Mean water quality parameter measurements were pH 8.08 plus or minus 0.10, salinity 36.6 plus or minus 0.9‰ and dissolved oxygen 11.1 plus or minus 0.61 mg/L. Temperature was recorded at 10 min intervals using a data logger (Maxim ibutton) and averaged -1.0 plus or minus 1.0°C. In tests where exposure commenced as zygotes, endpoints were the embryonic 4-8 cell (20 h) and unhatched blastula (48 h) stages, and the larval blastula (6–7 d) and gastrula (14–15 d) stages. In tests with exposure commencing as gametes, endpoints were the larval blastula, gastrula and early 4-arm pluteus (21–24 d) stages. At each endpoint a sample was taken from each replicate by drawing an aliquot with a glass pipette and transferring it to a vial, to which 1 mL of 2.5% (v/v) buffered glutaraldehyde was added. Embryo and larvae were viewed in a Sedgewick Rafter counting cell under a compound microscope at 10 times magnification. The first 30 individuals in each sample at the 4-8 cell and unhatched blastula endpoints, and the first 100 individuals at the blastula, gastrula and pluteus endpoints, were assessed for normality. Test EL1 ended at the blastula stage and tests EL2 and GL2 at the gastrula stage as there were insufficient numbers of larvae remaining to continue the test beyond these stages. All remaining larvae were counted at the final endpoint. Chemical analysis of water accommodated fractions Total hydrocarbon content (THC) in WAFs were derived from replicate tests conducted under the same conditions but without test organisms. In these tests at 0°C, the concentrations of freshly made WAFs of each of the three fuels, and the depletion of hydrocarbons from 100%, 50%, 10% and 1% WAFs at multiple time points over 7 d were measured. Extracts were analysed for THC with GC-FID. Total hydrocarbon content was reported as the sum of hydrocarbons (µg/L) in the range less than n-C9 to C28 (Dataset AAS_3054_THC_WAF). For fertilisation, and 2 cell embryonic development assays that were done in sealed vials, measured values in freshly decanted 50% and 10% WAF dilutions were used as the exposure concentrations. For the embryonic and larval toxicity tests that were done in open vials, the exposure concentrations of THC in WAFs were modelled from the measured concentrations in WAF depletion tests. Exposure concentrations used to model sensitivity estimates were derived by calculating the time weighted mean THC between pairs of successive measurements in the 100% WAFs and dilutions to give overall exposure concentrations for each time point. These modelled concentrations integrated the loss of hydrocarbons over time, and renewal of test solutions at 4 d intervals.

  • This metadata record contains the results from bioassays conducted to show the response of the Antarctic gastropod, Skenella palludinoides to contamination from combinations of Special Antarctic Blend (SAB) diesel, chemically dispersed with fuel dispersant Ardrox 6120. Fuel only water accommodated fractions (WAF), chemically enhanced water accommodated fractions (CEWAF) and dispersant only treatments were prepared following the methods in Singer et al. (2000) with adaptations from Barron and Ka’aihue (2003). WAF was made using the ratio of 1: 25 (v/v), fuel to filtered seawater (FSW) following the methods of Brown et al. (2017). Ratios for chemically dispersed treatments were 1: 100 (v/v), fuel to FSW and 1: 20 (v/v) dispersant to fuel. Dispersant only treatments were made using ratios for CEWAF, substituting the fuel component with FSW. Mixes were made in 5 L or 10 L glass aspirator bottles using a magnetic stirrer to achieve a vortex of approximately 20% in the FSW before the addition of test media. The same mixing energy was used to prepare all WAFs for enhanced reproducibility and comparability of results (Barron and Ka’aihue, 2003). Mixes were stirred in darkness to prevent bacterial growth for 18 h with an additional settling time of 6 h at 0 plus or minus 1 oC. A dilution series of four concentrations were made from the full strength aqueous phase of each mix using serial dilution. WAF test concentrations were 100%, 50%, 20% and 10% while CEWAF concentrations were 10%, 5%, 1% and 0.1%. These concentrations were chosen in order to quantify the mortality curve and allow statistical calculation of LC50 values. To facilitate comparisons of dispersant toxicity in the presence and absence of fuel, dispersant only test concentrations reflected those of CEWAF treatments. WAF was sealed in airtight glass bottles stored at 0 plus or minus 1 oC for a maximum of 3 h before use. Fresh test solutions were prepared every four days to ensure consistent water quality and replace hydrocarbons that adsorbed or evaporated into the atmosphere. Each test concentration was represented by five replicates with five FSW control beakers, with approximately 10 S.palludinoides individuals per replicate. The healthiest and most active individuals were chosen. Beakers were filled to 200 ml and were left open to allow the natural evaporation of lighter monoaromatic hydrocarbon components that would occur during a real spill. Animals were not fed during experiments to prevent hydrocarbons being ingested, thereby introducing an additional exposure pathway. Experiments ran for a total of 35 d exposure duration for WAF and CEWAF experiments and 15 d for dispersant only experiments. Experiments were run in cold temperature-controlled cabinets set at a temperature of 0 plus or minus 1 oC, fluorescent lights in the cabinets were set to a light regime of 18 h light, 6 h darkness, following the methods in Brown et al. (2017) to reflect Antarctic summer environmental conditions. Lethal and sublethal observations were made at test times of: 24 h, 48 h, 96 h, 7 d, 8 d, 10 d and 12 d, 14 d, 16 d, 20 d, 21 d, 28 d and 35 d for SAB + Ardrox 6120 experiments and 24 h, 48 h, 96 h, 7 d, 8 d, 10 d and 12 d, 14 d, 15 d for Ardrox 6120 only experiments. The health status of each individual was classified as per the criteria listed below: - Attached to the vial with horns in or out - Unattached (often upside down), horns out, will reattach if flipped over - Not attached but if touched, will retract - Closed but attached and out of water - Operculum closed - Dead, operculum open a little (muscles no longer working), if touched, operculum will not move and tissues might disintegrate Dead animals were removed and preserved in 80% ethanol at each observation period. In order to simulate a repeated pulse pollutant, 90 to 100% of the test solution volume of each beaker was renewed with freshly made test concentrations every four days to replenish hydrocarbons lost through evaporation and adsorption and ensure consistent water quality. Beakers were topped up to 200 ml between water changes with deionised water to maintain water quality parameters. Duplicate 25 ml aliquots of test concentrations were taken at the beginning and end of each experiment in addition to pre and post water change samples. Samples were immediately extracted with 0.7 μm of dichloromethane spiked with an internal standard of BrC20 (1-bromoeicosane) and cyclooctane. Samples were analysed using Gas Chromatography with Flame Ionisation Detection (GC-FID) and mass spectrometry (GC-MS). Brown, K.E., King, C.K., Harrison, P.L., 2017. Lethal and behavioural impacts of diesel and fuel oil on the Antarctic amphipod Paramoera walkeri. Environmental Toxicology and Chemistry. Animal collection, 2013 experiments: animals sourced from AAD aquarium, collected in previous seasons. Animal collection, 2014 experiments: January and February 2014 Experiments were conducted at the Marine Research Facility at the Australian Antarctic Division in Kingston, Tasmania. Experiments using SAB fuel and the fuel dispersant Ardrox 6120 were conducted in August and September 2013, with additional experiments conducted in May 2014 using Ardrox 6120 only.

  • This metadata record contains an Excel file containing total petroleum hydrocarbon data from analysis of marine sediments collected at Davis Station from December 2009 to March 2010. Refer to the Davis STP reports lodged under metadata record Davis_STP for the full Davis Sewage Treatment Project methods and result details. Davis STP - Total petroleum hydrocarbons Hydrocarbons were extracted from a 10g sub-sample of homogenised wet soil by tumbling overnight with a mixture of 10 mL of deionised water, 10 mL of dichlormethane (DCM), and 1 mL of DCM spiked with internal standards: 254 mg/L bromoeicosane; 55.2 mg/L 1,4 dichlorobenzene; 51.2 mg/L p-terphenyl; 52.2 mg/L tetracosane-d50; and 255 mg/L cyclo-octane. Samples were then centrifuged for 5 minutes at 1000 rpm, this was repeated a further 3 times to ensure complete separation of the organic and aqueous fractions. The DCM fraction was then extracted and placed into GC-vials. Extracts were analysed for total petroleum hydrocarbons (TPH) by gas chromatography using flame ionisation detection (GC-FID; Agilent 6890N with a split/splitless injector) and an auto-sampler (Agilent 7683 ALS). Separation was achieved using an SGE BP1 column (25 m x 0.22 mm ID, 0.25 µm film thickness). 1 µL of extract was injected (5:1 pulsed split) at 310° C and 17.7 psi of helium carrier gas. After 1.3 minutes, the carrier gas pressure was adjusted to maintain constant flow at 3.0 mL/min for the duration of the oven program. The oven temperature program was started at 36 °C (held for 3 minutes) and increased to 320 °C at 18 °C/min. Detector temperature was 330 °C. TPH concentrations were determined using a calibration curve, generated from standard solutions of special Antarctic blend diesel (SAB), and standard diesel. TPH was measured using the ratio of the total detector response of all hydrocarbons to the internal standard peak response. List of compounds analysed - C8-C28 individual hydrocarbon components - Naphthalene - Biomarkers (phytanes) - Total signal and area, and resolved compounds from C8 to C40, over specific ranges (e.g. C9-C18, SAB) Reporting limit - 0.3 mg.kg-1 on a dry matter basis (DMB) for individual components - 2.5-160 mg.kg-1 on a dry matter basis (DMB) for various calculated ranges Analytical uncertainty - Analytical precision: (a) 3 samples extracted and analysed in triplicate, (b) 3 extracts analysed by GC-FID in duplicate; only 1 of each set greater than RL (160): (a) RSD = 2%, (b) RSD = 0.4% - Site heterogeneity: reproducibility (RSD) of mean data from site replicate samples (mostly duplicates) was 24% (mean, SD 20%, range 4-60%, n=8) - From the limited data on reproducibility summarised above, it can be concluded that site heterogeneity contributes most to the uncertainty of the TPH data for the site locations. Background of the Davis STP project Refer to the Davis STP reports lodged under metadata record Davis_STP.

  • This metadata record contains the results of bioassays conducted to characterise the response of Antarctic nearshore marine invertebrates to hydrocarbon contaminants in fuels commonly used in Antarctica. AAS Project 3054. The results of Season 2 and Season 3 amphipod tests are in this dataset. Ecotoxicological bioassays were conducted at Davis and Casey Stations in 2009/10, 2010/11 and 2011/12 summer seasons to test the sensitivity of marine invertebrates to fuels in seawater. The three fuel types used in this project were: Special Antarctic Blend diesel (SAB), Marine Gas Oil diesel (MGO) and an intermediate grade (180) of marine bunker Fuel Oil (IFO). Test treatments were obtained by experimentally mixing fuel and seawater in temperature control cabinets at -1 degrees C to prepare a mixture of fuel hydrocarbons in filtered seawater (FSW) termed the Water Accommodated Fraction (WAF). WAF was produced by adding fuel to seawater in 5 L or 10 L Pyrex glass bottles using a ratio of 1:25 Fuel : FSW. This mixture was stirred at slow speed with minimal vortex for 18 h on a magnetic stirrer. The mixture was settled for 6 h before the water portion was drawn from beneath the fuel. This dataset contains the results of ecotoxicological bioassays with near-shore marine amphipod species exposed to WAFs of SAB WAF, MGO WAF and IFO WAF (specified above). Experimental treatments consisted of undiluted 100% WAF and dilutions of 10% and 1% of WAFs in FSW, to test the toxicity of water accommodated fractions of these three fuels on Antarctic marine invertebrates. The majority of experiments tested WAFs of each of the three fuels, although one tested SAB only due to limited supply of test organisms. Bioassays were conducted in open vessels (glass jars or beakers) in temperature controlled cabinets. Mortality and/or sub-lethal effects were observed at endpoints of 24 h, 48 h, 96 h, 7 d, 8 d, 10 d, 12 d, 14 d, 16 d and 21 d. New WAF solutions were prepared at 4 d intervals to replenish the experimental treatments. Deionised water was added to test solutions as required to maintain test solution volume and salinity. Water quality data was collected at each water change. Hydrocarbon concentrations in WAFs were determined from replicate experiments to measure THC in WAFs over time (Dataset AAS_3054_THC_WAF). WAF exposure concentrations for each bioassay endpoint were derived from these hydrocarbon tests. An integrated concentration was calculated from measured hydrocarbon concentrations weighted to time. Calculations account for depletion of hydrocarbons from test treatments and any renewal of treatments. These integrated THC concentrations for endpoints from 24h to 21d are contained in dataset AAS_3054_THC_WAF_integ_conc_10_11_12. This dataset consists of Excel spreadsheets. The file name code for invertebrate bioassays is; Project number_Season_Taxa_Test name Eg AAS_3054_10_11_amphipod_2PWA1 Project number : AAS_3054 Season : 2010/11 season Taxa: amphipod Test name:2 for Season 2, PW for genus and species, A for adult, 1 for Test 1 Bioassay spreadsheets contain the results of bioassays for a species. Where replicate tests were conducted, each experiment is on a separate spreadsheet. The worksheet labelled "Test conditions" shows details of Test name, dates, animal collection details, laboratory holding conditions, details of water accommodated fractions (WAF), bioassay conditions, scoring criteria and water quality data. The worksheet labelled "Counts" has columns for Replicate number and columns with the Score for all the animals in that replicate at every time endpoint. A full description of the scoring criteria is on the "Test conditions" worksheet. Totals, means and standard deviations are calculated for each treatment. The worksheet labelled "Totals, means, percent, StDev" has calculations of Survival, Unaffected, including mean and standard deviation, Percent Survival and Unaffected including means and standard deviation. Also included is column for the Total number of moults in each treatment. During the research to obtain early life stages of invertebrates for experiments, the number of Paramoera walkeri amphipod neonates per female, the timing of their release from the brood pouch and their early growth rate were recorded. These data are also included in AAS_3054_10_11_PW_neonates Samples were collected from: Ellis Narrows, Vestfold Hills Airport Beach, Davis, Vestfold Hills Prydz Bay, Davis (Between Anchorage Island and Bluff Island) Bailey Peninsula, Windmill Islands

  • These data relate to the Max Easton Honours project, carried out at Macquarie University in 2010, supervised by Simon George THE LONG-TERM DEGRADATION OF LUBRICANT OIL IN ANTARCTIC MARINE SEDIMENTS. A simulated marine spill has been carried out by the Australian Antarctic Division (AAD) over a five year period, in which Antarctic sea-bed sediments were doped with various petroleum products and left in a shallow marine environment to examine the extent and rate of natural degradation. Of these pollutants, unused Mobil lubricant oil (OW/40; Exxon Mobil) was analysed qualitatively and semi-quantitatively by gas chromatography-mass spectroscopy (GC-MS) to determine the composition of the oil and the rates and modes of degradation. The Mobil Lubricant Oil was found to consist of three dominant compound classes; 1) a series of branched alkanes with chain lengths of C25-26 and C33-34, 2) a series of long chain alkylnaphthalenes (formula C26H40), and 3) a series of bulky alkanoate esters. Other minor compounds were also identified. The alkanoate esters were depleted most readily, to less than 20% their initial values after 65 weeks. Branched alkanes and long chain alkylnaphthalenes were both recalcitrant over time, present at ~10% of their initial value after 260 weeks. Both the branched alkanes and long chain alkylnaphthalenes exhibited near identical behaviour through the sediment profile over time, depleting at the surface and increasing at depths consistent with migration through the sediment profile. Branched alkanes were depleted most rapidly relative to all other compounds, perhaps owing to preferred the biodegradation of long alkyl chains. No clear interpretation of the dominant mode of degradation was able to be defined, although it is believed that a multitude of removal mechanisms participate in the removal of lubricant oils in Antarctic marine sediments. 1) Retention time - Minutes 2) Region - It is a retention time window, labelled A to G as colours 3) Peak area - Peak area is in arbitrary units.

  • Ecotoxicological tests were done at Davis and Casey Stations in 2009/10, 2010/11 and 2011/12 summer seasons under AAS Project 3054 to test the sensitivity of near-shore marine invertebrates to fuels in seawater. The three fuel types used in this project were: Special Antarctic Blend diesel (SAB), Marine Gas Oil diesel (MGO) and an intermediate grade (180) of marine bunker fuel oil (IFO). This dataset contains the results of tests with the near-shore amphipod species Paramoera walkeri exposed to WAFs of SAB, MGO and IFO 180 (specified below) conducted at Davis Station in 2009/10 summer (Season 1). Test treatments were obtained by experimentally mixing fuel and seawater in temperature control cabinets at -1°C to prepare a mixture of fuel hydrocarbons in filtered seawater (FSW) termed the water accommodated fraction (WAF). WAF was produced by adding fuel to seawater in 5 L or 10 L Pyrex glass bottles using a ratio of 1:40 fuel : FSW. This mixture was stirred at slow speed with minimal vortex on a magnetic stirrer. The water portion was then drawn from beneath the fuel. Test treatments consisted of undiluted 100% WAF and dilutions of 10% and 1% of WAFs in FSW. Toxicity tests were conducted in open glass vessels in temperature controlled cabinets. Mortality and/or sub-lethal effects were observed at endpoints of 24 h, 48 h, 96 h, 7 d, 14 d, and 21 d. Treatments were renewed at 7 d intervals. Water quality data was collected at each water change. Hydrocarbon concentrations in WAFs were determined from replicate experiments to measure THC in WAFs over time (Dataset AAS_3054_THC_WAF). WAF exposure concentrations for each test endpoint were derived from these hydrocarbon tests to account for depletion of hydrocarbons from test treatments and any renewal of treatments. An integrated concentration was calculated from measured hydrocarbon concentrations weighted to time. These integrated THC concentrations for endpoints from 24h to 21d are contained in dataset AAS_3054_THC_WAF_integrated_conc_09_10 and are the exposure concentrations used for analysis of sensitivity. Species tested; Paramoera walkeri amphipod; adults This dataset consists of Excel spreadsheets. The file name code for invertebrate tests is; Project number_Season_Taxa_Test name Eg AAS_3054_09_10_amphipod_1PWA1 Project number : AAS_3054 Season : 2009/10 season Taxa: amphipod Test name: 1 for Season 1, PW for genus and species, A for adult, 1 for Test 1 Spreadsheets contain the results of tests with this species. Where replicate tests were conducted, each experiment is on a separate spreadsheet. The worksheet labelled 'Test conditions' shows details of Test name, dates, animal collection details, laboratory holding conditions, details of water accommodated fractions (WAF), test conditions, scoring criteria and water quality data. The worksheet labelled 'Counts' has columns for Replicate number and columns with the Score for all the animals in that replicate at every time endpoint. A full description of the scoring criteria is on the 'Test conditions' worksheet. Totals, means and standard deviations are calculated for each treatment. The worksheet labelled 'Totals, means, percent, StDev' has calculations of Survival, Unaffected, including mean and standard deviation, Percent Survival and Unaffected including means and standard deviation. Amphipod tests also show the Total number of moults in each treatment. Samples were collected at the following locations: - Airport Beach, Davis, Vestfold Hills

  • Experiments were done to quantify the Total Hydrocarbon Content (THC) in water accommodated fractions (WAF) of three fuels; Special Antarctic Blend diesel (SAB), Marine Gas Oil diesel (MGO) and an intermediate grade of marine bunker Fuel Oil (IFO 180).These tests measured the hydrocarbon content in freshly decanted WAFs and the resulting loss of hydrocarbons over time when WAFs were exposed in temperature controlled cabinets at 0°C. These tests are detailed in Dataset AAS_3054_THC_WAF. The results of hydrocarbon WAF tests were used to calculate integrated concentration from measured hydrocarbon concentrations weighted to time to be used as the exposure concentrations for toxicity tests with Antarctic invertebrates. Exposure concentrations used to model sensitivity estimates were derived by calculating the time weighted mean THC between pairs of successive measurements in the 100% WAFs and dilutions to give overall exposure concentrations for each time point.These modelled concentrations integrated the loss of hydrocarbons over time, and renewal of test solutions at 4 d intervals Exposure concentrations of THC in µg/L are shown for endpoints from 24 h to 21 d

  • This metadata record will contain the results of bioassays conducted to characterise the response of Antarctic near-shore marine zooplankton to hydrocarbon contaminants in Special Antarctic Blend (SAB) diesel fuels commonly used in Antarctica. The results from one summer season (2010-11) are in this record. This was conducted under the AAS Project 3054: Ecological risks from oil products used in Antarctica: characterising hydrocarbon behaviour and assessing toxicity on sensitive early life stages of Antarctic marine invertebrates. Exposure solutions of fuel were experimentally mixed by slow stir of fuel and seawater in temperature control cabinets at -1 degree C to prepare a mixture of fuel hydrocarbons in filtered seawater (FSW) termed the Water Accommodated Fraction (WAF). WAF was produced by adding fuel to seawater in 5 L or 10 L Pyrex glass bottles using a ratio of 1:24 Fuel : FSW. This mixture was stirred at slow speed with minimal vortex for 18 h on a magnetic stirrer. The mixture was settled for 6 h before the water portion was drawn from beneath the fuel. Ecotoxicological bioassays were conducted at Davis Stations in the 2010/11 summer season using SAB WAF to prepare experimental treatments consisting of WAF dilution series. For each bioassay, treatments consisted of undiluted 100% WAF and dilutions of 10%, 17%, 25% and 50% of WAFs in FSW, to test the toxicity of water accommodated fractions of these three fuels on Antarctic both the zooplankton community and single copepod species. Bioassays were conducted in open vessels (glass jars or beakers) in temperature controlled cabinets. Mortality was observed at endpoints of 24 hrs, 48 hrs, 96 hrs, 7 days, 8 days, 9 days, 10 days, 11days, 12 days, 14 days, 15 days, and 16 days. New WAF solutions were prepared at the 7 day interval to replenish the experimental treatments. Deionised water was added to test solutions as required to maintain test solution volume and salinity. Water quality data was collected at each water change. Samples of test treatments for chemical analysis of hydrocarbon concentration were taken at each water change. Results of these analyses are not included as delayed progress with HC analyses impacted on quality of samples and these data were not used. This dataset consists of Excel spreadsheets. The file name code for zooplankton bioassays is; Project number_Season_Taxa_Test name Eg AAS_3054_10-11_zooplankton_m1 Project number : AAS_3054 Season : 2010/11 season Taxa: Zooplankton Community Test name: M1 =Multi-species test 1 Bioassay spreadsheets contain the results of bioassays for a species or the zooplankton community. Where replicate tests were conducted, each experiment is on a separate worksheet. The worksheet labelled "Test conditions" shows details of Test name, dates, animal collection details, laboratory holding conditions, details of water accommodated fractions (WAF), and bioassay conditions. The worksheet labelled "Counts" has a table for each of the replicates, arranged into a column for each treatment type. These tables show the number or dead individuals which were found and removed at each of the observation days. The worksheet labelled "Totals" has calculations of total number of individuals (of all species) which were found dead at each observation day in each replicate. It also gives the mean and standard deviation for each of the treatments. Further information on the zooplankton community structure in the 6 samples taken across the summer, based on the community in the toxicity tests and trials, is also included in the spreadsheet "AAS_3054_10-11_zooplankton_CommStructure". Sampling locations were near-shore from Davis Station, Vestfold Hills and from O'Gorman Rocks, southwest of Anchorage Island and northwest of Plough Island.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.